If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2+35p=0
a = 5; b = 35; c = 0;
Δ = b2-4ac
Δ = 352-4·5·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-35}{2*5}=\frac{-70}{10} =-7 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+35}{2*5}=\frac{0}{10} =0 $
| 3x+4+x=6+2+4x | | -4(2x+9)+3x=4(x-3) | | -63n=-8.19 | | 6–(3+x)=10 | | 19-3s=10 | | 2i(3-2i)+4-i=-3(3-2i)+2i | | 5–2f=3 | | -×^2=8x | | 8+w=4 | | 1x=729-9 | | -10+x=-19 | | 2/3=h/21 | | 8p^2+23p-3=0 | | 2(1+5x)=5(2x–1) | | 4. 2(1+5x)=5(2x–1) | | 144=18n | | 6–2u=4 | | y(1)=5 | | 2i(3-2i)+4-i=-3(3-2i)2i | | 2q–2q+q=18 | | 4x+8=17.2+5x | | 16m+4m–20m+3m–3=15 | | 13x-10=2(15)+12 | | z+3.7=8.9 | | 4x+8=17.2 | | n+17=4n-8 | | 61x+20x-20x=350+20x-20x | | 2(x12)-2x=3(x-2) | | 8x+32=4(x+5) | | ?x?x?=504 | | 700+1x=14 | | -5(4)+2y-1=3 |